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ABSTRACT 
Spatiotemporal processes, such as floods, rainfall-runoff, and land- 
use changes, continuously evolve over space and time with high 
dynamism and complex nonlinearity. Accurate and efficient spa
tiotemporal process prediction is crucial for understanding their 
underlying patterns. Recently, deep learning has effectively 
addressed spatiotemporal prediction issues in Earth science. 
However, most existing studies address either short-term or long- 
term dependencies, but ignore the multiscale characteristics and 
spatial heterogeneity inherent to spatiotemporal processes and 
critical for practical applicability. This study develops a 
Spatiotemporal Adaptive Multiscale Transformer (SAMT) model for 
spatiotemporal process prediction. First, we design an enhanced 
multiscale spatial heterogeneity module to extract multiscale spa
tial heterogeneity. Then, we introduce the adaptive scale selection 
that assigns weights to features at different scales based on their 
contributions. In addition, we incorporate a spatiotemporal trans
former block to simultaneously capture short-term and long-term 
dependencies. We conduct extensive experiments on three repre
sentative spatiotemporal datasets of rainfall, temperature, and 
flood. Compared to state-of-the-art models, the SAMT model 
achieves significant improvements across all evaluation metrics. 
The developed SAMT model critically improves the performance 
of spatiotemporal process prediction for more accurate and 
effective modelling of spatiotemporal evolution patterns in the 
field of Earth sciences.
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1. Introduction

Spatiotemporal processes refer to the dynamic evolution of various geographic phe
nomena in space over time, such as flood inundation, rainfall-runoff, and land use 
changes (Zheng et al. 2022, Yao et al. 2023). These processes are not only highly 
dynamic and nonlinear but also characterized by multiscale characteristics and spatial 
heterogeneity. (Song et al. 2020, Hu et al. 2024). Meanwhile, these inherent geographic 
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characteristics present significant challenges in uncovering knowledge and identifying 
patterns within spatiotemporal processes (Song 2022, Ren et al. 2025). As a critical 
approach to uncovering spatiotemporal process patterns, accurate and efficient spatio
temporal process prediction plays a crucial role in understanding these patterns 
(Panahi et al. 2021, Speight et al. 2021).

Spatiotemporal process prediction aims to predict future sequence variations based 
on historical observation data, emphasizing the integration of temporal and spatial 
dynamics (Ge et al. 2019). Current approaches include physics-based models, shallow 
machine learning models, and deep learning models (Brunner et al. 2021). Physics- 
based models constitute a traditional yet widely adopted approach for spatiotemporal 
process prediction and employ complex mathematical equations to describe and 
quantify spatiotemporal dynamics. For different spatiotemporal processes, researchers 
have developed various models. For example, the Xin’anjiang model (L€u et al. 2013), 
the variable infiltration capacity model (Su et al. 2024), and the soil and water assess
ment tool model (Zhao et al. 2024) are commonly employed for flood simulation and 
prediction. In addition, numerical weather prediction model and optical flow-based 
algorithms are utilized for radar-based precipitation nowcasting. Although physics- 
based models are effective in predicting flood inundation and rainfall-runoff processes, 
they typically require extensive input data for model calibration and parameter adjust
ment. Moreover, the interdependencies among parameters make these methods both 
computationally expensive and time-consuming.

Compared to physics-based models, shallow machine learning models can address 
simple nonlinear problems without explicitly modelling the physical process. Early 
methods included linear regression (Zhang et al. 2018), autoregressive models, and 
their variants (Pulukuri et al. 2018). Subsequently, more advanced techniques, includ
ing support vector machines (Campolo et al. 1999), random forest (Tang et al. 2021), 
decision trees (Bui et al. 2019), and extreme learning machines (Adnan et al. 2019), 
have been applied to spatiotemporal process prediction. However, the inherent com
plexity and variability of spatiotemporal processes present significant challenges for 
machine learning methods in capturing temporal, spatial, and spatiotemporal depend
encies (Song et al. 2025). Their relatively simple architectures limit their ability to han
dle highly nonlinear relationships.

Recently, deep learning has gained significant attention in spatiotemporal process 
prediction. The ability of deep learning to automatically extract features, provide 
strong nonlinear representation, and provide diverse network architectures has shifted 
research from physics-based and traditional machine learning models toward deep 
learning–based intelligent methods. For example, temporal dynamics are modelled 
using RNNs (Sadeghi Tabas et al. 2023) and LSTMs (Graves 2012), while spatial relation
ships are effectively captured by CNNs (Gu et al. 2018), GNNs (Li et al. 2018), and 
attention mechanisms (Zhu et al. 2021). Current research is focusing on integrating 
temporal and spatial representation models to capture the spatiotemporal dynamics, 
with approaches like ConvLSTM (Xu et al. 2024), PredRNN (Wu et al. 2022), and SAST- 
GCN (Jin et al. 2025) being employed to model these complex processes. These deep 
learning methods have significantly advanced the field of spatiotemporal process 
prediction.
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However, the high dynamism, multiscale characteristics, and spatial heterogeneity of 
spatiotemporal processes pose significant challenges for accurate prediction (Zhang 
et al. 2021). First, existing methods usually ignore the inherent multiscale nature of spa
tiotemporal processes and typically capture interactions at a single scale when using 
multiscale contextual information (Zhang et al. 2024). This results in the loss of crucial 
spatiotemporal information and insufficient feature representation. Second, from a tem
poral perspective, attribute values at a given spatial location evolve over time, while 
from a spatial perspective, attribute values exhibit variations across different locations at 
the same time. The combined effect of these temporal and spatial variations gives rise 
to spatiotemporal heterogeneity. Despite these challenges, current research on spatio
temporal process prediction has yet to adequately explore these issues.

To overcome these challenges, we develop a spatiotemporal adaptive multiscale 
transformer (SAMT) for spatiotemporal process prediction. Given the Transformer’s 
strong capability for modeling long-range dependencies, which has led to its success
ful application in object detection, image segmentation, and video recognition tasks 
(e.g., ConvFormer (Gu et al. 2023), PKI-net (Cai et al. 2024), and Uniformer (Li et al. 
2023)), its application in spatiotemporal process prediction still requires further devel
opment. SAMT model adopts Transformer architecture as the fundamental framework 
to effectively capture spatiotemporal dependencies. Specifically, we design an 
enhanced multiscale spatial heterogeneity block that integrates both multiscale char
acteristics and spatial heterogeneity to improve feature extraction. In addition, we 
design an adaptive scale selection block, which dynamically selects the most inform
ative multiscale feature representation for spatiotemporal prediction, assigning adap
tive weights to different scales to enhance model prediction performance.

The study makes the following key contributions. First, we propose an enhanced 
multi-scale spatial heterogeneity module to capture spatial patterns at multiple scales. 
This module strengthens the representation capability of spatiotemporal process mod
els by explicitly modeling complex spatial variations that are usually ignored in the 
exsiting studies involving multi-scale spatial heterogeneity. Second, we introduce a 
scale-adaptive selection mechanism that dynamically assigns weights to features at dif
ferent scales based on their relative importance. In contrast to conventional 
approaches that simply sum multi-scale features, this mechanism enables the model 
to effectively investigate multi-scale spatial heterogeneity in a data-driven manner and 
improve prediction performance. Third, we replace the feed-forward network in the 
standard Transformer block with a 3D CNN to jointly capture both short-term and 
long-term spatiotemporal dependencies. This integration further enhances the model’s 
ability to represent intricate spatiotemporal dynamics compared with traditional archi
tectures. Finally, extensive experiments conducted on three spatiotemporal datasets 
demonstrate that the SAMT model is consistently better than state-of-the-art models 
due to the effectiveness of its hybrid architecture and adaptive multiscale modeling in 
spatiotemporal process prediction.

The remainder of this paper is structured as follows. Section 2 reviews related work. 
Section 3 describes the proposed spatiotemporal process prediction model. Section 4
presents the experimental setup, results, and analysis. Section 5 concludes the paper 
and outlines future work.
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2. Related work

The spatiotemporal process prediction aims to predict future sequences based on histor
ical sequence data from a specific region. The current research on spatiotemporal process 
prediction can generally be categorized into three main categories: physics-based meth
ods, shallow machine learning methods, and deep learning methods (Brunner et al. 2021).

Physics-based methods describe spatiotemporal processes using mathematical for
mulations grounded in physical laws. Noori and Kalin (2016) employed the SWAT to 
predict the daily rainfall process across nearly 29 watersheds. Leskens et al. (2014) uti
lized different flood models to assess the predictive performance of the physical 
model in capturing flood dynamics. Bli�z�n�ak et al. (2017) employed an extrapolation- 
based model to forecast rainfall patterns. Although physics-based approaches provide 
notable advantages, their reliance on high-resolution input data and computationally 
intensive, inefficient processing significantly constrains their scalability and applicability 
in spatiotemporal process forecasting.

As a viable alternative, shallow machine learning methods can model the nonlinear 
interactions among available data and construct input-output relationships without 
necessitating an in-depth comprehension of the underlying physical characteristics. Yan 
et al. (2018) developed a physics-based model to simulate data and constructed two sup
port vector machine models to predict flood warning and maximum flood depth, 
respectively. Adnan et al. (2019) investigated a novel heuristic approach and predicted 
the daily streamflow process using an extreme learning machine model. Li et al. (2016) 
utilized a random forest algorithm to forecast daily variations in lake water levels. 
Compared to physics-based models, machine learning methods have demonstrated 
improvements in predictive performance. However, due to their relatively simple struc
ture, these models usually prioritize temporal information while ignoring spatial depend
encies when handling multiscale, high-dimensional data. In addition, they face challenges 
in effectively capturing the intricate nonlinear relationships in spatiotemporal processes.

Deep learning-based methods are black-box models that can establish end-to-end 
relationships between inputs and outputs. Leveraging their powerful nonlinear fitting 
capabilities, deep learning approaches have become valuable tools for spatiotemporal 
process prediction. Shi et al. (2015) initially proposed the ConvLSTM model for prediction, 
which integrates CNN and LSTM to effectively capture spatiotemporal features, marking a 
shift from modelling temporal dependencies to modelling spatiotemporal relationships. 
Later, Wang et al. (2017) extended this idea by proposing PredRNN, which incorporates a 
Spatiotemporal LSTM unit capable of simultaneously modelling spatial and temporal fea
tures within a unified unit. Furthermore, Wang et al. (2018) proposed the PredRNNþþ
model for spatiotemporal process prediction, which introduces the causal LSTM unit and 
combines temporal and spatial structures in a concatenated form to better capture 
short-term dependency features. Wang et al. (2019) proposed a Memory in Memory 
(MIM) network, which improves the forget gate in the ST-LSTM unit for modelling both 
stationarity and non-stationarity in spatiotemporal dynamics. To enhance the ability to 
capture spatiotemporal relationships, Gao et al. (2022) developed the SimVP model, 
which incorporates a gated spatiotemporal attention transformer for improved represen
tation learning. In addition, Some studies have adopted attention mechanisms for their 
effectiveness in capturing long-range spatial and temporal correlations through global 
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context modelling (Xiong et al. 2021, Liu et al. 2022, Tang et al. 2024). Luo et al. (2021) 
proposed IDA-LSTM, which incorporates an interaction framework and dual attention 
mechanisms to improve rainfall prediction. Tang et al. (2023) introduced SwinLSTM by 
embedding Swin Transformer blocks into a simplified LSTM structure, effectively captur
ing global spatiotemporal dependencies. Tang et al. (2024) presented PredFormer, a 
recurrent-free Transformer framework that achieves improvements in both prediction 
accuracy and computational efficiency. Seo et al. (2023) proposed IAM4VP for weather– 
climate prediction that integrates the strengths of both autoregressive and non- 
autoregressive approaches. Li et al. (2023) propose UniFormer, a unified transformer 
architecture that integrates convolution and self-attention to efficiently handle both local 
redundancy and global dependency. He et al. (2025) developed STMixGAN, a radar-based 
precipitation nowcasting model that effectively captures spatiotemporal rainfall evolution 
and outperforms conventional and deep learning–based methods.

In summary, deep learning methods primarily focus on modelling short- and long-term 
spatiotemporal but usually ignore the multiscale characteristics and spatial heterogeneity 
in spatiotemporal variations. The complex linear relationships within spatiotemporal proc
esses remain insufficiently explored. In response to the limitations, we present an adaptive 
multiscale Transformer model. The proposed approach offers a more reliable and practical 
method for accurately predicting spatiotemporal processes.

3. Methodology

This section presents a comprehensive overview of the proposed Spatiotemporal 
Adaptive Multiscale Transformer (SAMT) model. The SAMT model comprises five key 
components (see Figure 1): a shallow feature block, an enhanced multiscale spatial 
heterogeneity feature extraction block, an adaptive scale selective block, a spatiotem
poral feature extraction block and a prediction block.

The shallow feature extraction block initializes input features using a 2D CNN layer. 
The remaining, more complex components are detailed in the subsequent subsections.

3.1. Preliminaries

Before introducing the detailed methodology, we first provide a statement of the spatio
temporal process prediction problem. The spatiotemporal process prediction involves fore
casting future sequences based on historical observed sequences within a spatial region. 
Formally, given an observation sequence of length T, it is represented as X ¼

x1, x2, :::, xTð Þ; where xT 2 R
H�W�C: H and W correspond to the spatial region, and C is 

the channel numbers of the feature map. The prediction task aims to produce a future 
sequence Ŷ of length T

0

by maximizing its probability, which can be defined using Eq. (1)
(Shi et al. 2015):

ŷ tþ1, ŷ tþ2, :::, ŷ tþT 0 ¼ arg maxP
ytþ1, ytþ2, :::, y

tþT
0

¼ ytþ1, ytþ2, :::, ytþT 0Xg (1) 

where P �j�ð Þ denote the conditional probability. The predicted sequence Ŷ is set of 
ŷ tþ1, ŷ tþ2, :::, ŷ tþT 0 ; which is expressed as Ŷ ¼ ðŷ tþ1, ŷ tþ2, :::, ŷ tþT 0 Þ; where ŷ i has the 
same shape as xi:
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3.2. Adaptive multiscale transformer network with spatial heterogeneity

3.2.1. Enhanced multiscale spatial heterogeneity feature extraction
Spatial heterogeneity is widely present in various geographic processes and is one of 
the most common spatial phenomena (Li and Reynolds 1995, Fotheringham and 
Sachdeva 2022). Spatial heterogeneity refers to variations in spatial attributes across 
different locations. In addition, spatial heterogeneity varies across different scales, 
tending to decrease as the spatial scale increases (Riera and Magnuson 1998). This 
makes spatiotemporal feature extraction challenging. To address this problem, inspired 
by inception Architecture (Szegedy et al. 2017) and deformable convolution (Zhu et al. 
2018), the enhanced multiscale spatial heterogeneity feature extraction block (EMSHB) 
was proposed.

Figure 1. Overall framework of the proposed Spatiotemporal Adaptive Multiscale Transformer 
(SAMT) model. (a) Shallow feature block, (b) top: convolution block attention module (CBAM), bot
tom: Multiscale Spatial Heterogeneity Module (MSHM), (c) Adaptive Scale Selection Module (ASSM), 
(d) Spatiotemporal Transformer Block (STTB), (e) Prediction Block.
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As a core component of SAMT, the EMSHB incorporates both the Convolutional 
Block Attention Module (CBAM) and the Multiscale Spatial Heterogeneity Module 
(MSHM). CBAM is a lightweight attention module composed of two submodules: chan
nel attention and spatial attention, with its structure shown in Figure 2. CBAM can fil
ter out unimportant information from feature maps while retaining important 
information, without increasing the number of parameters or computational cost (Yin 
et al. 2023). When the initialised input feature is F 2 RC�T�H�W ; the input feature map 
is sequentially processed by the channel and spatial attention modules to compute 
the corresponding weights. These weights are then applied to the input via element- 
wise multiplication to generate the enhanced feature map Fenh 2 RC�T�H�W : The pro
cess can be expressed by Equations (2) and (3) (Woo et al. 2018).

F0 ¼ Mc Fð Þ � F (2) 

Fenh ¼ Ms F0ð Þ � F0 (3) 

To capture spatial heterogeneity at different scales in spatiotemporal processes, the 
MSHM is designed. As shown in Figure 3 (left), the enhanced spatiotemporal features 
from the previous step are first processed through different convolution layers. These 
outputs are then passed through a shared deformable convolution operation, followed 
by feature fusion across different scales. This process can be expressed as follows:

Mmshm Fð Þ ¼ Concat DeConv Convk Fenhð Þð Þð Þ (4) 

Figure 2. The architectural structure of the convolutional block attention module (CBAM).

Figure 3. Structure diagram of MSHM (left) and STTB (right). where � indicates element-wise 
addition.
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where k 2 f1� 1, 3� 3, 5� 5, 7� 7g; Fenh represents the enhanced feature, Conv rep
resents the convolution operation, DeConv represents the deformation convolution 
operation and Concat represents the feature connection operation.

Specifically, the MSHM utilises convolution kernels of sizes 1, 3, 5, and 7 to capture spa
tial heterogeneity at multiple scales. Unlike standard convolution kernels that extract fea
tures using only regular windows, which significantly limits their ability to capture 
heterogeneous information, we introduce deformable convolution inspired by the deform
able convolution network. MSHM can learn offset parameters for adaptive extraction of 
heterogeneous spatial information, which is expressed in Equation (5) (Zhu et al. 2018).

DeConv xð Þ ¼
X

pn2R

w pnð Þ � x p0 þ pn þ Dpnð Þ (5) 

Taking the 3 x 3 convolution as an example, the grid R with the receptive field is 
defined as f −1, − 1ð Þ, −1, 0ð Þ, −1, 1ð Þ, :::, 1, − 1ð Þ, 1, 0ð Þ, 1, 1ð Þg: Given an input feature 
map x; the convolution output at location p0 is computed as a weighted sum over 
locations p0 þ pn þ Dpnð Þ; where pn 2 R and Dpn represents the learnable offset. It is 
worth noting that Dpn is typically a fractional value, requiring bilinear interpolation to 
determine the new feature value at the location of p0 þ pn þ Dpnð Þ:

3.2.2. Adaptive scale selective module
After obtaining multiscale spatial heterogeneity features, directly adding or concate
nating features from different scales usually assigns equal weights to all scales, ignor
ing their varying importance in spatiotemporal process prediction (Gao et al. 2023). 
Since the contribution of spatial heterogeneity features at different scales varies, it is 
essential to assign weights adaptively rather than treating all scales equally. As shown 
in Figure 4, to fully leverage multiscale spatial heterogeneity features, we design an 
adaptive scale selection module (ASSM) that enables the model to autonomously learn 
weight parameters during training and assign different weights based on the contribu
tion of heterogeneous spatial features at each scale. To facilitate understanding, this 
process can be simplified as Equation (6).

Fout ¼
Xn

i¼1

wi � Fi,
Xn

i¼1

wi ¼ 1 (6) 

where wi represents adaptive weight, n represents the number of scale features, Fi 

represents the feature at different scales, and Fout represents the feature output after 
weighted fusion.

Figure 4. The process of adaptive scale selection module (ASSM). FC denotes a fully connected 
layer, and � represents element-wise multiplication.
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Specifically, the adaptive selection of features at more scales can be extended in 
the three example scales. The ASSM consists of three stages: stacking, fusing, and 
selecting. The first stage is stacking input features that are passed through different 
convolution layers to obtain features at four distinct scales. These features are then 
stacked along a newly introduced dimension, referred to as the scale dimension, 
resulting in Fstack: The next stage is fusing features from different scales using element 
wise addition. A global average pooling operation is then applied to incorporate glo
bal contextual information, yielding Fglobal; which contains channel-wise statistical 
information. Subsequently, Fglobal is transformed into a compact representation Fcompact 

via a fully connected (FC) layer. The last stage is selecting weights for multi-scale infor
mation. To facilitate precise adaptive scale selection and generate weights for each 
scale, the FC layers matching the number of scales is applied to Fcompact; resulting in 
F1; F2; F3 and F4: These generated features are concatenated along the scale dimen
sion, aligning with the dimension of Fstack: The softmax function is then employed to 
generate scale-specific weights W; enabling the model to adaptively select relevant 
spatial heterogeneity features across different scales. Finally, the weights W are multi
plied by Fstack; applying distinct weights to the feature at each scale, and the resulting 
features are aggregated through a summation operation to yield the output feature 
Fadaptive after adaptive selection.

3.2.3. Spatiotemporal feature extraction
To model spatiotemporal dependencies between different frames in the spatiotempo
ral process, we employ a transformer block with a 3D convolution operation, referred 
to as the spatiotemporal transformer block (STTB), as illustrated in Figure 3 (right). In 
STTB, 3D convolution is employed to extract short-term dependencies, while the trans
former mechanism is designed to model long-term dependencies. Compared to stack
ing multiple ConvLSTM blocks to model long-term dependencies, the transformer 
component in STTB leverages a multi-head attention mechanism that more effectively 
captures long-range dependencies and alleviates the gradient vanishing problem.

Specifically, STTB is composed of two key sublayers: a multi-head attention layer 
(MHA) and a feed-forward network (FFN) layer (Vaswani et al. 2017). A residual connec
tion is incorporated between these two sublayers with a layer normalization (LN) 
applied before each sublayer, as described in Yang et al. (2022). First, Fadaptive is proc
essed through layer normalization, yielding F̂ adaptive ¼ LN Fadaptiveð Þ: Then it is fed into 
the spatiotemporal multi-head attention layer, where 3D convolution operations are 
used to obtain Q, K and V, formulated as follows:

Q ¼ Conv3DQ F̂ adaptive

� �

(7) 

K ¼ Conv3DK F̂ adaptive

� �

(8) 

V ¼ Conv3DV F̂ adaptive

� �

(9) 

where Conv3D represents 3D convolution operation. Compared to the linear transform
ation in the standard Transformer block, applying 3D convolution allows for capturing 
short-term dependency in the spatiotemporal process. Meanwhile, the long-term depend
encies are captured based on the principles of the attention mechanism, formulated as 
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follows (Vaswani et al. 2017):

FMHA ¼ Softmax
QKT

ffiffiffiffi
D
p

 !

V (10) 

where FMHA represents the feature map after the MHA layer, and Softmax represents 
the softmax function.

Further, the residual connection is applied to obtain:

Fattention ¼ FMHA þ Fadaptive (11) 

After that, the final output of the STTB is obtain as follows:

Fout ¼ FFN LN Fattentionð Þð Þ þ Fattention (12) 

Finally, following the configuration of Vaswani et al. (2017), we stack six STTB mod
ules to effectively capture and model spatiotemporal dependencies, thereby enhanc
ing the model’s representational capacity.

4. Experiments and evaluation

4.1. Data description and experimental setup

The proposed model was evaluated on three spatiotemporal process datasets (see 
Table 1), including the Shenzhen radar echo rainfall dataset, the WeatherBench data
set, and the Dongting Lake flood inundation dataset.

The Shenzhen radar echo rainfall dataset originates from Luo et al. (2021) and is 
used for short-term rainfall forecasting. From this dataset, the samples used for train
ing, validation, and testing are 8,000, 2,000, and 4,000, respectively. Each sample con
sists of 15 radar echo images, recorded at 6-minute intervals, covering an area of 
101 km x 101 km. In the training phase, the model takes the first five-time steps as 
input to predict the radar echo rainfall patterns for the subsequent ten-time steps.

The WeatherBench dataset, provided by Rasp et al. (2020), serves as a widely recog
nized benchmark for climate prediction. It includes gridded climate variables from 
1979 to 2018, encompassing a variety of meteorological factors such as temperature, 
humidity, and others. Due to the dataset’s large scale and the abundance of variables, 
we select temperature as the target variable for our experiments. The data has a spa
tial resolution of 5.625� (resulting in a 64� 32 global grid) and a temporal resolution 
of 1 hour, providing global coverage. Following the data split strategy of Rasp et al. 
(2020), we use the years 1979–2015 for training, 2016 for validation, and 2017–2018 
for testing. This results in 13,514 training samples, 366 validation samples, and 730 
testing samples. Each sample consists of 24 sequential global temperature frames, 

Table 1. Overview of the spatiotemporal process datasets used in the experiments.

Dataset Input size
Train  

sequence
Validation/test  

sequence
Input  

length
Output  
length

Shenzhen radar echo rainfall 128 x 128 8,000 6,000 5 10
WeatherBench 64 x 32 13,514 1,096 12 12
Dongting lake flood inundation 128 x 128 10,800 2,730 12 12
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corresponding to 24 hourly measurements. The prediction task is formulated as a 12-h 
ahead forecast, using the past 12 hours of temperature data to predict the following 
12 h. All temperature values are expressed in Kelvin (K).

The Dongting Lake flood inundation dataset, compiled by Chen et al. (2024), 
records the flood process from 2012 to 2022, featuring an hourly temporal resolution 
and a spatial resolution of 10 meters. We selected data from the years 2012, 2014, 
2016, 2017, and 2019 for model training. Given that each image contains 
4,350� 5,610 grid cells, making direct input to the model computationally expensive 
and prone to memory overflow. To mitigate this, we cropped the images into 
128� 128 patches with a 0.2 overlap ratio, yielding 10,800 training samples and 2,730 
testing samples. Each sample comprises 24 flood inundation images, where the initial 
12 frames serve as input and the remaining 12 frames are predicted as output, pre
dicting the spatiotemporal evolution of flood inundation.

To ensure a fair evaluation, all experiments were conducted on the same machine 
to eliminate potential biases caused by varying hardware setups. We selected seven 
models, ConvLSTM (Shi et al. 2015), PredRNN (Wang et al. 2017), PredRNNþþ (Wang 
et al. 2018), SimVP (Gao et al. 2022), IDA-LSTM (Luo et al. 2021), SwinLSTM (Tang et al. 
2023), PredFormer (Tang et al. 2024), IAM4VP (Seo et al. 2023), STMixGAN (He et al. 
2025), and Uniformer (Li et al. 2023), for comparison with the proposed model. We 
selected Adam as the optimizer, with a learning rate set to 0.0005 and a maximum of 
8,000 iterations. All implementations were developed using PyTorch and Python.

4.2. Evaluation metrics

To validate the performance and effectiveness of the proposed model, we used Mean 
Squared Error (MSE), Mean Absolute Error (MAE), and Structural Similarity Index 
Measure (SSIM) as evaluation metrics to measure the differences between the predic
tion and ground truth (Liu et al. 2022). Given the observed image yi and predicted 
image ŷ i; their calculation formulas are as follows (Shi et al. 2015):

MSE ¼
1
n

Xn

i¼1

yi − y
0

i

� �2

(15) 

MAE ¼
1
n

Xn

i¼1

yi − y
0

i

�
�
�

�
�
� (16) 

SSIM ŷ, yð Þ ¼
2lŷly þ C1
� �

2rŷy þ C2
� �

l2
ŷ þ l2

y þ C1

� �
r2

ŷ þ r2
y þ C2

� � (17) 

where n is the total number of observations, lŷ and ly represent the mean values of 
the predicted and ground truth images, r2

ŷ and r2
y are their respective variances, rŷ y is 

the covariance between them, C1 and C2 are small constants added to prevent div
ision by zero.

In addition, we also selected the meteorological evaluation metrics, Critical Success 
Index (CSI) (Liu et al. 2022) and Heidke Skill Score (HSS) (Luo et al. 2021), to assess the 
accuracy of radar echo rainfall process prediction. Specifically, we set three thresholds 
of 5, 20, and 40 to represent different rainfall intensities (light rain, moderate rain, and 
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heavy rain). The predicted pixel values and ground-truth pixel values are converted to 
0/1 using these thresholds. The formulas for CSI and CSI can be as follows (Hogan 
et al. 2010):

CSI ¼
TP

TP þ FNþ FP
(18) 

HSS ¼
TP� TN − FN� FP

ðTP þ FNÞðFN þ TNÞ þ ðTP þ FPÞðFP þ TNÞ
(19) 

where TP (True Positive) refers to correctly predicting an event that occurred, and TN 
(True Negative) refers to correctly predicting the absence of an event. FP (False 
Positive) means incorrectly predicting an event that did not occur, and FN (False 
Negative) means failing to predict an event that occurred. CSI and HSS scores lie 
between 0 and 1, with greater values reflecting superior prediction performance.

4.3. Performance comparison

4.3.1. Comparison with state-of-the-art (SOTA) methods
Table 2 presents the performance comparsion between the proposed model and the 
SOTA models on Shenzhen radar echo data. Bold values indicate the best perform
ance. Spatiotemporal Multiscale Transformer (SMT) model refers to the model without 
the adaptive scale selection module, while SAMT represents the model incorporating 
this module. Specifically, our model outperforms others in HSS and CSI across different 
thresholds. At HSS thresholds of 5, 20, and 40 dBZ, the proposed model surpasses the 
best benchmark model (IDA-LSTM) by 0.8, 1.5, and 8.4%, respectively. Similarly, for CSI 
at the same thresholds, SAMT demonstrates improvement of 1, 2.3, and 5.9% over 
IDA-LSTM, respectively. In addition, compared to other models, the SAMT model 
achieves the second-best result in MAE, with only a minor difference from the optimal 
result, while achieving the best performance in MSE. Notably, SwinLSTM, PredFormer, 
Uniformer, IAM4VP and STMixGAN performed similarly poorly across all metrics. This 
may be due to the fact that both models struggle to capture the spatiotemporal evo
lution patterns of radar-based rainfall processes, especially under conditions of limited 
historical input and long prediction horizons. Furthermore, the results indicate that 

Table 2. Quantitative comparison results between our model and SOTA models on the Shenzhen 
radar echo rainfall dataset.

dBZ threshold

HSS " CSI "

MAE # MSE #5 20 40 5 20 40

ConvLSTM 0.696 0.491 0.127 0.771 0.421 0.070 15.00 24.34
PredRNN 0.710 0.494 0.096 0.773 0.408 0.059 14.15 23.67
PredRNNþþ 0.708 0.515 0.148 0.772 0.437 0.091 14.35 23.8
SimVP 0.675 0.474 0.129 0.755 0.401 0.082 15.60 24.76
IDA-LSTM 0.715 0.518 0.171 0.778 0.440 0.106 14.13 23.66
SwinLSTM 0.542 0.348 0.003 0.656 0.297 0.002 21.30 30.75
PredFormer 0.530 0.346 0.007 0.644 0.290 0.004 21.54 31.33
IAM4VP 0.529 0.348 0.012 0.644 0.297 0.007 21.79 32.13
STMixGAN 0.535 0.356 0.014 0.650 0.303 0.008 21.46 30.93
Uniformer 0.538 0.351 0.014 0.648 0.300 0.008 21.76 30.41
SMT (ours) 0.723 0.515 0.237 0.784 0.450 0.150 14.47 23.00
SAMT (ours) 0.723 0.533 0.255 0.788 0.463 0.161 14.31 22.56
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most models effectively identify low-value regions (5 dBZ). However, for medium-to- 
high-value regions (20 and 40 dBZ) SAMT outperforms the the weakest-performing 
model, improving prediction accuracy by 18.7 and 25.2% in HSS and by 17.3 and 
15.9% in CSI. The results domonstrate that the SAMT model provides more accurate 
predictions of the spatiotemporal rainfall process across different rainfall thresholds.

Figure 5 depicts the variations in HSS and CSI prediction curves at different time 
steps under various thresholds. As the number of future time frames increases, the 
prediction performance of most models gradually declines, highlighting the challenges 
of long-term forecasting. However, as shown in Figure 5, our model achieves the best 
prediction accuracy at all threshold values, with its prediction curves consistently 
remaining above those of other models. These results indicate the enhanced stability 
and reliability of the proposed model.

Figure 5. Comparison of radar echo rainfall prediction performance across models using CSI and 
HSS under different thresholds.
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To further demonstrate the predictive capability of the proposed model across dif
ferent rainfall intensities, Figures 6 and 7 present the visualization of prediction results 
and the corresponding errors between the predicted and observed values for various 
models on the Shenzhen radar echo rainfall dataset. As illustrated in Figures 6 and 7, 
SAMT produces predictions that closely resemble the ground truth and consistently 
outperforms other models across all regions, achieving lower errors under varying rain
fall intensities. SMT ranks second, followed by IDA-LSTM, whereas SwinLSTM, 
PredFormer, STMixGAN, IAM4VP, and Uniformer perform less effectively. These results 
underscore the strong ability of SAMT to model spatial heterogeneity and capture het
erogeneous patterns in rainfall processes. In addition, SAMT maintains consistently 
sparse prediction errors across time steps, indicating its capacity to effectively capture 

Figure 6. An example of visualization results on the Shenzhen radar echo rainfall dataset. The top 
row displays five input images along with the corresponding ground truth outputs, while the rows 
below show predictions from different models.
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both short- and long-term dependencies. This advantage stems from its architecture, 
which leverages the short-range modelling capabilities of convolution operations and 
the long-range modelling strength of the transformer.

Similarly, the SAMT model was evaluated on the WeatherBench dataset. As pre
sented in Table 3, our model achieves the highest scores across all metrics. 
Specifically, the proposed SAMT model improves upon the best benchmark by 22.27% 
in MAE, 41.93% in MSE, and 0.76% in SSIM. Notably, all state-of-the-art baseline mod
els demonstrate a decline in performance compared to the proposed SAMT model, 
with SimVP model showing the most significant decline, highlighting the superior gen
eralization capability of our model. Figures 8 and 9 present the visualization of 

Figure 7. An example of error comparison visualization on the Shenzhen radar echo rainfall data
set. The top row displays five input images along with their corresponding ground truth outputs. 
The second row shows the predictions generated by SAMT, while the remaining rows present the 
normalized errors between the predictions of different models and the ground truth.
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prediction global temperature predictions results and the corresponding errors 
between the predicted and observed values for various models. The error is calculated 
as the absolute difference between the predicted and ground truth frames, i.e., 
jpredicted − ground truthj.

As observed, the predictions generated by SAMT exhibit a high degree of consist
ency with the actual observations. Compared with the true temperature distribution, 
SAMT produces smaller error maps and effectively captures the global temperature 

Table 3. Quantitative comparison results between our model and SOTA models on the 
WeatherBench dataset.
Model MAE # MSE # SSIM "

ConvLSTM 109.46 10.40 0.7654
PredRNN 148.25 18.45 0.6487
PredRNNþþ 121.44 14.13 0.7917
SimVP 1808.38 296.04 0.2707
IDA-LSTM 135.02 15.47 0.7135
SwinLSTM 52.34 2.34 0.9025
PredFormer 47.12 1.78 0.9260
IAM4VP 43.00 1.55 0.9262
STMixGAN 54.38 6.91 0.9364
Uniformer 46.74 1.84 0.8908
SMT (ours) 31.86 0.93 0.9421
SAMT (ours) 31.27 0.90 0.9440

Figure 8. An example of visualization results on the WeatherBench dataset. The first and second 
rows display the ground truth temperature maps, with the first 12 hours serving as input and the 
subsequent 12 hours as output. The remaining rows show the 12-hour predictions from various 
models.
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distribution patterns across low-, medium-, and high-heterogeneity regions. SwinLSTM 
and PredFormer generally align with the observed temperature distribution but tend 
to overestimate high-value regions (red), leading to larger errors. The predictions from 
Uniformer, IAM4VP, and STMixGAN models are mostly consistent with the ground 
truth, but their error distributions are larger than that of SAMT, with STMixGAN exhib
iting relatively larger errors in certain cases (e.g., the third-to-last predicted frame). In 
contrast, models such as ConvLSTM, PredRNNþþ, and IDA-LSTM fail to accurately cap
ture temperature dynamics, especially in medium-to-high heterogeneity regions, 
resulting in deviations from the ground. Moreover, PredRNN and SimVP exhibit large 
prediction errors from the beginning, with accuracy deteriorating over time, particu
larly for SimVP, whose degradation is more pronounced. The results in Table 3, Figures 
8 and 9 further demonstrate that the SAMT model, which incorporates multiscale spa
tial heterogeneity, has a distinct advantage in capturing complex spatial patterns, 
especially in heterogeneous regions, enabling accurate prediction of dynamic changes 
in global temperature.

Beyond evaluating the effectiveness of the proposed model on radar echo datasets, 
we further performed comparative experiments using the flood inundation dataset to 
demonstrate its applicability across diverse spatiotemporal processes. Table 4 summa
rizes the quantitative performance results on the flood inundation dataset. Figure 10

Figure 9. An example of error comparison visualization on the WeatherBench dataset. The first 
and second rows show the ground truth temperature maps, with the first 12 hours used as inputs 
and the following 12 hours as outputs. The third row presents the predictions from our proposed 
model, while the remaining rows display the error maps between the predicted and true values for 
different models over the next 12 hours.
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provides visualization examples of the predictions, where white represents “water” and 
black represents “no water.” The first shows the ground truth inundation areas, with 
the first 12 frames as input and the subsequent 12 frames as the expected output. 
The remaining rows display the predicted inundation areas for different models. For 
clarity, one frame is visualized every three frames. Our model achieves superior per
formance across three commonly used evaluation metrics (see Table 4), namely MAE, 
MSE, and SSIM, outperforming the strongest baseline by 16.23, 2.36, and 0.19%, 
respectively. Among the compared models, PredRNNþþ performers the worst in terms 
of MSE, while Uniformer exhibits the poorest performance in MAE. As for SSIM, the dif
ferences among models are relatively small, with only a 2.59% gap between the best 
and worst-performing models.

Figure 10 illustrates that all models can effectively capture the overall shape of the 
inundation areas. However, from the visualization results, ConvLSTM, PredRNN, 
PredRNNþþ, and IDA-LSTM produce blurry predictions, with IDA-LSTM being the most 
affected, followed by PredRNNþþ. In contrast, SwinLSTM, PredFormer, IAM4VP, 
STMixGAN, Uniformer, SimVP, SMT and SAMT generate clearer and more reliable pre
dictions, indicating that these models have stronger generalization ability and can bet
ter adapt to different spatiotemporal process scenarios. Furthermore, compared to 
SimVP, the proposed model aligns more closely with the actual inundation extent 
dynamics, especially in complex regions such as boundaries. The results highlight the 
superior capability of our model to learn and capture the intricate dynamics inherent 
in the flood inundation process.

4.3.2. Comparison with variants of proposed method
To further verify the effectiveness of our model, we performed comparative experi
ments to assess the contribution of its key components. Table 5 summarizes the abla
tion study results, where “w/o” indicates the exclusion of a specific module. Notably, 
CBAMþMSHM is equivalent to ESMHB as described in Section 3.2.1, but for consist
ency in comparison, we refer to it uniformly as CBAMþMSHM. As shown in Table 5, 
removing either the CBAM or ASSM component leads to a decline in all metrics. The 
results suggest that CBAM enables the SAMT model to prioritize crucial information 
while filtering out irrelevant details. Meanwhile, ASSM allows for adaptive selection of 
multiscale information, assigning varying weights to different scales, which 

Table 4. Quantitative comparison results between our model and SOTA models on the flood 
inundation dataset.
Model MAE # MSE # SSIM "

ConvLSTM 77.49 36.75 0.9821
PredRNN 61.21 34.68 0.9861
PredRNNþþ 74.8 185.07 0.9630
SimVP 58.75 70.00 0.9822
IDA-LSTM 85.64 35.97 0.9859
SwinLSTM 69.92 34.86 0.9831
PredFormer 108.92 35.28 0.9717
IAM4VP 99.07 36.84 0.9822
STMixGAN 102.84 45.45 0.9792
Uniformer 157.94 37.86 0.9621
SMT (ours) 53.26 33.89 0.9878
SAMT (ours) 49.21 33.86 0.9880
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significantly enhances the model’s performance. When the model lacks the MSHM 
component, its performance is significantly worse than all results obtained with MSHM 
included, emphasizing the critical role of multiscale features and spatial heterogeneity 
in spatiotemporal prediction.

In addition, we investigated the impact of CBAM placement on prediction perform
ance. The results indicate that applying feature enhancement first outperforms 

Figure 10. Visualization of prediction examples on the Dongting Lake flood inundation dataset.
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applying it afterwards. Moreover, removing the designed components results in the 
worst performance, with significant declines across all metrics. Ultimately, the model 
incorporating all components achieves the best results, confirming the effectiveness of 
the proposed design through ablation experiments.

4.3.3. Multiscale spatial heterogeneity analysis
The ablation study results in Section 4.3.2 demonstrate that ignoring the inherent spa
tial heterogeneity in spatiotemporal processes significantly degrades the SAMT mod
el’s prediction accuracy. To further emphasize the importance of incorporating 
multiscale features, we conducted a comparative analysis on the Shenzhen radar echo 
rainfall dataset by adjusting the convolution kernel size in the MSHM, evaluating the 
model’s performance under both single-scale and multiscale settings. Specifically, we 
tested four individual scales corresponding to convolution kernel sizes of 1, 3, 5, and 
7, as well as a multiscale scenario that integrates all four. Notably, different kernel 
sizes represent different receptive fields, with each kernel size capturing spatial 
dependencies at a distinct scale. The quantitative results are presented in Table 6, 
while Figure 11 provides a visual comparison of predictions under single-scale and 
multiscale settings.

As presented in Table 6, the multiscale model consistently outperforms all single- 
scale counterparts across nearly all threshold settings for both HSS and CSI metrics, 
with particularly pronounced improvements in the medium-to-high value ranges. The 
results clearly demonstrate that multiscale feature representations are crucial for cap
turing spatial heterogeneity, significantly enhancing the model’s ability to forecast 

Table 5. Quantitative results of the ablation study for our model on the Shenzhen radar echo 
rainfall dataset.

dBZ Threshold

HSS " CSI "

MAE # MSE #5 20 40 5 20 40

w/o CBAM 
w/o MSHM 
w/o ASSM

0.717 0.462 0.232 0.779 0.419 0.147 17.52 26.79

w/o CBAM 
MSHMþASSM

0.721 0.517 0.251 0.785 0.454 0.158 14.56 22.97

w/o ASSM 
CBAMþMSHM

0.723 0.515 0.237 0.784 0.450 0.150 14.47 23.00

w/o MSHM 
w/o ASSM 
CBAM

0.722 0.512 0.247 0.783 0.452 0.153 14.92 23.66

MSHMþASSMþ CBAM 0.715 0.518 0.220 0.788 0.448 0.138 14.36 22.59
CBAMþMSHMþASSM 0.723 0.533 0.255 0.788 0.463 0.161 14.31 22.56

Table 6. Performance comparison of single-scale and multi-scale spatial heterogeneity.

Model

Scale HSS " CSI "

1 3 5 7 5 20 40 5 20 40

scale_1 ✓ 0.702 0.471 0.247 0.787 0.432 0.155
scale_3 ✓ 0.708 0.489 0.224 0.772 0.417 0.138
scale_5 ✓ 0.711 0.497 0.205 0.776 0.440 0.130
scale_7 ✓ 0.713 0.502 0.240 0.789 0.446 0.150
scale_1_3_5_7 ✓ ✓ ✓ ✓ 0.723 0.533 0.255 0.788 0.463 0.161
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dynamic patterns in heterogeneous regions accurately. In detail, when the HSS and 
CSI thresholds are set to 40, the scale_5 configuration yields the weakest performance, 
followed by scale_3, scale_7, and scale_1, respectively. Under thresholds of 5 and 20, 
scale_1 exhibits the poorest performance, while scale_7 performs best. These results 
indicate that different convolutional scales capture complementary aspects of spatial 
heterogeneity that are beneficial for spatiotemporal prediction. They also highlight the 
limitations of single-scale modelling in representing complex dynamic processes.

Furthermore, as illustrated in Figure 11, although the prediction quality of all mod
els degrades over time, the multiscale model consistently stays closer to the ground 
truth. These findings indicate that the multiscale model better captures long-term 
dependencies and more accurately represents the direction and morphological 
changes of complex spatiotemporal dynamics.

5. Conclusions and future work

In this study, we propose a novel model, SAMT, for improving the prediction of spatio
temporal processes. The model effectively captures the multiscale characteristics and 
spatial heterogeneity of spatiotemporal dynamics, which are commonly ignored by 
existing approaches. To enhance feature representation, we introduce an Adaptive 
Scale Selection Module (ASSM) to assign dynamic weights to features at different 
scales based on their individual contributions and thus reducing information redun
dancy and improving utilization efficiency. Then, a Spatiotemporal Transformer Block 
(STTB) is incorporated to simultaneously model short-term fluctuations and long-term 
dependencies. The results of three representative spatiotemporal datasets show that 
SAMT consistently surpasses state-of-the-art models across different evaluation metrics, 
with HSS increasing by 0.8–25.2%, CSI by 1–15.9%, MAE by 16.23–98.26%, MSE by 
2.36–99.69%, and SSIM by 0.19–67.25%. The proposed model contributes to the 
advancement of geographic information science through more accurate and effective 
dynamic spatiotemporal prediction. The SAMT can be implemented in the dynamic 
spatial analysis and spatiotemporal process evolution in broader fields, such as 

Figure 11. Visualization of prediction examples under single-scale and multiscale settings on the 
Shenzhen radar echo rainfall dataset.
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ecology, hydrology, and meteorology. Even promising progress has been made, the 
study is constrained to regions with abundant data, which requires future research to 
enhance spatiotemporal prediction in data-scarce or data-absent areas through meth
ods such as transfer learning and physics-informed modelling.
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