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ABSTRACT ARTICLE HISTORY
Spatiotemporal processes, such as floods, rainfall-runoff, and land- Received 14 May 2025

use changes, continuously evolve over space and time with high Accepted 8 December 2025
dynamism and complex nonlinearity. Accurate and efficient spa-
tiotemporal process prediction is crucial for understanding their
underlying patterns. Recently, deep learning has effectively
addressed spatiotemporal prediction issues in Earth science.
However, most existing studies address either short-term or long-
term dependencies, but ignore the multiscale characteristics and
spatial heterogeneity inherent to spatiotemporal processes and
critical for practical applicability. This study develops a
Spatiotemporal Adaptive Multiscale Transformer (SAMT) model for
spatiotemporal process prediction. First, we design an enhanced
multiscale spatial heterogeneity module to extract multiscale spa-
tial heterogeneity. Then, we introduce the adaptive scale selection
that assigns weights to features at different scales based on their
contributions. In addition, we incorporate a spatiotemporal trans-
former block to simultaneously capture short-term and long-term
dependencies. We conduct extensive experiments on three repre-
sentative spatiotemporal datasets of rainfall, temperature, and
flood. Compared to state-of-the-art models, the SAMT model
achieves significant improvements across all evaluation metrics.
The developed SAMT model critically improves the performance
of spatiotemporal process prediction for more accurate and
effective modelling of spatiotemporal evolution patterns in the
field of Earth sciences.

KEYWORDS
Spatiotemporal processes;
multiscale; spatial
heterogeneity; rainfall; flood
inundation

1. Introduction

Spatiotemporal processes refer to the dynamic evolution of various geographic phe-
nomena in space over time, such as flood inundation, rainfall-runoff, and land use
changes (Zheng et al. 2022, Yao et al. 2023). These processes are not only highly
dynamic and nonlinear but also characterized by multiscale characteristics and spatial
heterogeneity. (Song et al. 2020, Hu et al. 2024). Meanwhile, these inherent geographic

CONTACT Zegiang Chen @ chenzegiang@cug.edu.cn; Yongze Song @ Yongze.Song@curtin.edu.au
© 2026 Informa UK Limited, trading as Taylor & Francis Group


http://crossmark.crossref.org/dialog/?doi=10.1080/13658816.2025.2602536&domain=pdf&date_stamp=2026-01-08
http://orcid.org/0000-0003-3420-9622
http://www.tandfonline.com
https://doi.org/10.1080/13658816.2025.2602536

2 L. CHEN ET AL.

characteristics present significant challenges in uncovering knowledge and identifying
patterns within spatiotemporal processes (Song 2022, Ren et al. 2025). As a critical
approach to uncovering spatiotemporal process patterns, accurate and efficient spatio-
temporal process prediction plays a crucial role in understanding these patterns
(Panahi et al. 2021, Speight et al. 2021).

Spatiotemporal process prediction aims to predict future sequence variations based
on historical observation data, emphasizing the integration of temporal and spatial
dynamics (Ge et al. 2019). Current approaches include physics-based models, shallow
machine learning models, and deep learning models (Brunner et al. 2021). Physics-
based models constitute a traditional yet widely adopted approach for spatiotemporal
process prediction and employ complex mathematical equations to describe and
quantify spatiotemporal dynamics. For different spatiotemporal processes, researchers
have developed various models. For example, the Xin'anjiang model (Lu et al. 2013),
the variable infiltration capacity model (Su et al. 2024), and the soil and water assess-
ment tool model (Zhao et al. 2024) are commonly employed for flood simulation and
prediction. In addition, numerical weather prediction model and optical flow-based
algorithms are utilized for radar-based precipitation nowcasting. Although physics-
based models are effective in predicting flood inundation and rainfall-runoff processes,
they typically require extensive input data for model calibration and parameter adjust-
ment. Moreover, the interdependencies among parameters make these methods both
computationally expensive and time-consuming.

Compared to physics-based models, shallow machine learning models can address
simple nonlinear problems without explicitty modelling the physical process. Early
methods included linear regression (Zhang et al. 2018), autoregressive models, and
their variants (Pulukuri et al. 2018). Subsequently, more advanced techniques, includ-
ing support vector machines (Campolo et al. 1999), random forest (Tang et al. 2021),
decision trees (Bui et al. 2019), and extreme learning machines (Adnan et al. 2019),
have been applied to spatiotemporal process prediction. However, the inherent com-
plexity and variability of spatiotemporal processes present significant challenges for
machine learning methods in capturing temporal, spatial, and spatiotemporal depend-
encies (Song et al. 2025). Their relatively simple architectures limit their ability to han-
dle highly nonlinear relationships.

Recently, deep learning has gained significant attention in spatiotemporal process
prediction. The ability of deep learning to automatically extract features, provide
strong nonlinear representation, and provide diverse network architectures has shifted
research from physics-based and traditional machine learning models toward deep
learning-based intelligent methods. For example, temporal dynamics are modelled
using RNNs (Sadeghi Tabas et al. 2023) and LSTMs (Graves 2012), while spatial relation-
ships are effectively captured by CNNs (Gu et al. 2018), GNNs (Li et al. 2018), and
attention mechanisms (Zhu et al. 2021). Current research is focusing on integrating
temporal and spatial representation models to capture the spatiotemporal dynamics,
with approaches like ConvLSTM (Xu et al. 2024), PredRNN (Wu et al. 2022), and SAST-
GCN (Jin et al. 2025) being employed to model these complex processes. These deep
learning methods have significantly advanced the field of spatiotemporal process
prediction.
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However, the high dynamism, multiscale characteristics, and spatial heterogeneity of
spatiotemporal processes pose significant challenges for accurate prediction (Zhang
et al. 2021). First, existing methods usually ignore the inherent multiscale nature of spa-
tiotemporal processes and typically capture interactions at a single scale when using
multiscale contextual information (Zhang et al. 2024). This results in the loss of crucial
spatiotemporal information and insufficient feature representation. Second, from a tem-
poral perspective, attribute values at a given spatial location evolve over time, while
from a spatial perspective, attribute values exhibit variations across different locations at
the same time. The combined effect of these temporal and spatial variations gives rise
to spatiotemporal heterogeneity. Despite these challenges, current research on spatio-
temporal process prediction has yet to adequately explore these issues.

To overcome these challenges, we develop a spatiotemporal adaptive multiscale
transformer (SAMT) for spatiotemporal process prediction. Given the Transformer’s
strong capability for modeling long-range dependencies, which has led to its success-
ful application in object detection, image segmentation, and video recognition tasks
(e.g., ConvFormer (Gu et al. 2023), PKl-net (Cai et al. 2024), and Uniformer (Li et al.
2023)), its application in spatiotemporal process prediction still requires further devel-
opment. SAMT model adopts Transformer architecture as the fundamental framework
to effectively capture spatiotemporal dependencies. Specifically, we design an
enhanced multiscale spatial heterogeneity block that integrates both multiscale char-
acteristics and spatial heterogeneity to improve feature extraction. In addition, we
design an adaptive scale selection block, which dynamically selects the most inform-
ative multiscale feature representation for spatiotemporal prediction, assigning adap-
tive weights to different scales to enhance model prediction performance.

The study makes the following key contributions. First, we propose an enhanced
multi-scale spatial heterogeneity module to capture spatial patterns at multiple scales.
This module strengthens the representation capability of spatiotemporal process mod-
els by explicitly modeling complex spatial variations that are usually ignored in the
exsiting studies involving multi-scale spatial heterogeneity. Second, we introduce a
scale-adaptive selection mechanism that dynamically assigns weights to features at dif-
ferent scales based on their relative importance. In contrast to conventional
approaches that simply sum multi-scale features, this mechanism enables the model
to effectively investigate multi-scale spatial heterogeneity in a data-driven manner and
improve prediction performance. Third, we replace the feed-forward network in the
standard Transformer block with a 3D CNN to jointly capture both short-term and
long-term spatiotemporal dependencies. This integration further enhances the model’s
ability to represent intricate spatiotemporal dynamics compared with traditional archi-
tectures. Finally, extensive experiments conducted on three spatiotemporal datasets
demonstrate that the SAMT model is consistently better than state-of-the-art models
due to the effectiveness of its hybrid architecture and adaptive multiscale modeling in
spatiotemporal process prediction.

The remainder of this paper is structured as follows. Section 2 reviews related work.
Section 3 describes the proposed spatiotemporal process prediction model. Section 4
presents the experimental setup, results, and analysis. Section 5 concludes the paper
and outlines future work.
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2. Related work

The spatiotemporal process prediction aims to predict future sequences based on histor-
ical sequence data from a specific region. The current research on spatiotemporal process
prediction can generally be categorized into three main categories: physics-based meth-
ods, shallow machine learning methods, and deep learning methods (Brunner et al. 2021).

Physics-based methods describe spatiotemporal processes using mathematical for-
mulations grounded in physical laws. Noori and Kalin (2016) employed the SWAT to
predict the daily rainfall process across nearly 29 watersheds. Leskens et al. (2014) uti-
lized different flood models to assess the predictive performance of the physical
model in capturing flood dynamics. Bliznak et al. (2017) employed an extrapolation-
based model to forecast rainfall patterns. Although physics-based approaches provide
notable advantages, their reliance on high-resolution input data and computationally
intensive, inefficient processing significantly constrains their scalability and applicability
in spatiotemporal process forecasting.

As a viable alternative, shallow machine learning methods can model the nonlinear
interactions among available data and construct input-output relationships without
necessitating an in-depth comprehension of the underlying physical characteristics. Yan
et al. (2018) developed a physics-based model to simulate data and constructed two sup-
port vector machine models to predict flood warning and maximum flood depth,
respectively. Adnan et al. (2019) investigated a novel heuristic approach and predicted
the daily streamflow process using an extreme learning machine model. Li et al. (2016)
utilized a random forest algorithm to forecast daily variations in lake water levels.
Compared to physics-based models, machine learning methods have demonstrated
improvements in predictive performance. However, due to their relatively simple struc-
ture, these models usually prioritize temporal information while ignoring spatial depend-
encies when handling multiscale, high-dimensional data. In addition, they face challenges
in effectively capturing the intricate nonlinear relationships in spatiotemporal processes.

Deep learning-based methods are black-box models that can establish end-to-end
relationships between inputs and outputs. Leveraging their powerful nonlinear fitting
capabilities, deep learning approaches have become valuable tools for spatiotemporal
process prediction. Shi et al. (2015) initially proposed the ConvLSTM model for prediction,
which integrates CNN and LSTM to effectively capture spatiotemporal features, marking a
shift from modelling temporal dependencies to modelling spatiotemporal relationships.
Later, Wang et al. (2017) extended this idea by proposing PredRNN, which incorporates a
Spatiotemporal LSTM unit capable of simultaneously modelling spatial and temporal fea-
tures within a unified unit. Furthermore, Wang et al. (2018) proposed the PredRNN-++
model for spatiotemporal process prediction, which introduces the causal LSTM unit and
combines temporal and spatial structures in a concatenated form to better capture
short-term dependency features. Wang et al. (2019) proposed a Memory in Memory
(MIM) network, which improves the forget gate in the ST-LSTM unit for modelling both
stationarity and non-stationarity in spatiotemporal dynamics. To enhance the ability to
capture spatiotemporal relationships, Gao et al. (2022) developed the SimVP model,
which incorporates a gated spatiotemporal attention transformer for improved represen-
tation learning. In addition, Some studies have adopted attention mechanisms for their
effectiveness in capturing long-range spatial and temporal correlations through global
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context modelling (Xiong et al. 2021, Liu et al. 2022, Tang et al. 2024). Luo et al. (2021)
proposed IDA-LSTM, which incorporates an interaction framework and dual attention
mechanisms to improve rainfall prediction. Tang et al. (2023) introduced SwinLSTM by
embedding Swin Transformer blocks into a simplified LSTM structure, effectively captur-
ing global spatiotemporal dependencies. Tang et al. (2024) presented PredFormer, a
recurrent-free Transformer framework that achieves improvements in both prediction
accuracy and computational efficiency. Seo et al. (2023) proposed IAM4VP for weather-
climate prediction that integrates the strengths of both autoregressive and non-
autoregressive approaches. Li et al. (2023) propose UniFormer, a unified transformer
architecture that integrates convolution and self-attention to efficiently handle both local
redundancy and global dependency. He et al. (2025) developed STMixGAN, a radar-based
precipitation nowcasting model that effectively captures spatiotemporal rainfall evolution
and outperforms conventional and deep learning—based methods.

In summary, deep learning methods primarily focus on modelling short- and long-term
spatiotemporal but usually ignore the multiscale characteristics and spatial heterogeneity
in spatiotemporal variations. The complex linear relationships within spatiotemporal proc-
esses remain insufficiently explored. In response to the limitations, we present an adaptive
multiscale Transformer model. The proposed approach offers a more reliable and practical
method for accurately predicting spatiotemporal processes.

3. Methodology

This section presents a comprehensive overview of the proposed Spatiotemporal
Adaptive Multiscale Transformer (SAMT) model. The SAMT model comprises five key
components (see Figure 1): a shallow feature block, an enhanced multiscale spatial
heterogeneity feature extraction block, an adaptive scale selective block, a spatiotem-
poral feature extraction block and a prediction block.

The shallow feature extraction block initializes input features using a 2D CNN layer.
The remaining, more complex components are detailed in the subsequent subsections.

3.1. Preliminaries

Before introducing the detailed methodology, we first provide a statement of the spatio-
temporal process prediction problem. The spatiotemporal process prediction involves fore-
casting future sequences based on historical observed sequences within a spatial region.
Formally, given an observation sequence of length T, it is represented as X =
(X1, X2, ....X7), where xr € RF*WXCH and W correspond to the spatial region, and C is
the channel numbers of the feature map. The prediction task aims to produce a future
sequence Y of length T by maximizing its probability, which can be defined using Eq. (1)
(Shi et al. 2015):

Yesi Yoo Ypr = AGMaxP = ye, Yoo, - Yerm X} (M

YerrrYear Y

where P(:|-) denote the conditional probability. The predicted sequence Y is set of
Yes1:Yer2r Yoo s Which is expressed as Y = Vei1:Yepar - Yepr ), Where y; has the
same shape as x;.
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Figure 1. Overall framework of the proposed Spatiotemporal Adaptive Multiscale Transformer
(SAMT) model. (a) Shallow feature block, (b) top: convolution block attention module (CBAM), bot-
tom: Multiscale Spatial Heterogeneity Module (MSHM), (c) Adaptive Scale Selection Module (ASSM),
(d) Spatiotemporal Transformer Block (STTB), (e) Prediction Block.

3.2. Adaptive multiscale transformer network with spatial heterogeneity

3.2.1. Enhanced multiscale spatial heterogeneity feature extraction

Spatial heterogeneity is widely present in various geographic processes and is one of
the most common spatial phenomena (Li and Reynolds 1995, Fotheringham and
Sachdeva 2022). Spatial heterogeneity refers to variations in spatial attributes across
different locations. In addition, spatial heterogeneity varies across different scales,
tending to decrease as the spatial scale increases (Riera and Magnuson 1998). This
makes spatiotemporal feature extraction challenging. To address this problem, inspired
by inception Architecture (Szegedy et al. 2017) and deformable convolution (Zhu et al.
2018), the enhanced multiscale spatial heterogeneity feature extraction block (EMSHB)
was proposed.
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As a core component of SAMT, the EMSHB incorporates both the Convolutional
Block Attention Module (CBAM) and the Multiscale Spatial Heterogeneity Module
(MSHM). CBAM is a lightweight attention module composed of two submodules: chan-
nel attention and spatial attention, with its structure shown in Figure 2. CBAM can fil-
ter out unimportant information from feature maps while retaining important
information, without increasing the number of parameters or computational cost (Yin
et al. 2023). When the initialised input feature is F € RO*T*H*W the input feature map
is sequentially processed by the channel and spatial attention modules to compute
the corresponding weights. These weights are then applied to the input via element-
wise multiplication to generate the enhanced feature map Fenn € RTH*W The pro-
cess can be expressed by Equations (2) and (3) (Woo et al. 2018).

F=M(F)®F ()

Fenh = Ms(F) @ F' (3)

To capture spatial heterogeneity at different scales in spatiotemporal processes, the
MSHM is designed. As shown in Figure 3 (left), the enhanced spatiotemporal features
from the previous step are first processed through different convolution layers. These

outputs are then passed through a shared deformable convolution operation, followed
by feature fusion across different scales. This process can be expressed as follows:

Mmshm (F) = Concat(DeConv(Conv(Fenn))) (4)
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where k € {1 x 1,3 x3,5%5,7 x 7}, Fenp represents the enhanced feature, Conv rep-
resents the convolution operation, DeConv represents the deformation convolution
operation and Concat represents the feature connection operation.

Specifically, the MSHM utilises convolution kernels of sizes 1, 3, 5, and 7 to capture spa-
tial heterogeneity at multiple scales. Unlike standard convolution kernels that extract fea-
tures using only regular windows, which significantly limits their ability to capture
heterogeneous information, we introduce deformable convolution inspired by the deform-
able convolution network. MSHM can learn offset parameters for adaptive extraction of
heterogeneous spatial information, which is expressed in Equation (5) (Zhu et al. 2018).

DeConv(x) = Z W(pn) *X(Po + Pn + Apn) (5)
paeR

Taking the 3 x 3 convolution as an example, the grid R with the receptive field is
defined as {(-1, —1),(=1,0),(-1,1),...(1, = 1),(1,0),(1,1)}. Given an input feature
map x, the convolution output at location py is computed as a weighted sum over
locations (po + pn + Apn), where p, € R and Ap, represents the learnable offset. It is
worth noting that Ap, is typically a fractional value, requiring bilinear interpolation to
determine the new feature value at the location of (po + pn + Apn).

3.2.2. Adaptive scale selective module

After obtaining multiscale spatial heterogeneity features, directly adding or concate-
nating features from different scales usually assigns equal weights to all scales, ignor-
ing their varying importance in spatiotemporal process prediction (Gao et al. 2023).
Since the contribution of spatial heterogeneity features at different scales varies, it is
essential to assign weights adaptively rather than treating all scales equally. As shown
in Figure 4, to fully leverage multiscale spatial heterogeneity features, we design an
adaptive scale selection module (ASSM) that enables the model to autonomously learn
weight parameters during training and assign different weights based on the contribu-
tion of heterogeneous spatial features at each scale. To facilitate understanding, this
process can be simplified as Equation (6).

n n
Fout = > WixF, Y w=1 (6)
i=1 i=1

where w; represents adaptive weight, n represents the number of scale features, F;
represents the feature at different scales, and F,,; represents the feature output after
weighted fusion.

—[ Multiscale Feature ]—

Figure 4. The process of adaptive scale selection module (ASSM). FC denotes a fully connected
layer, and ® represents element-wise multiplication.
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Specifically, the adaptive selection of features at more scales can be extended in
the three example scales. The ASSM consists of three stages: stacking, fusing, and
selecting. The first stage is stacking input features that are passed through different
convolution layers to obtain features at four distinct scales. These features are then
stacked along a newly introduced dimension, referred to as the scale dimension,
resulting in Fge- The next stage is fusing features from different scales using element
wise addition. A global average pooling operation is then applied to incorporate glo-
bal contextual information, yielding Fgopar, Which contains channel-wise statistical
information. Subsequently, Fgiopq is transformed into a compact representation Feompact
via a fully connected (FC) layer. The last stage is selecting weights for multi-scale infor-
mation. To facilitate precise adaptive scale selection and generate weights for each
scale, the FC layers matching the number of scales is applied t0 Feompact, resulting in
Fi1, F2, F3 and F4. These generated features are concatenated along the scale dimen-
sion, aligning with the dimension of Fgy,q. The softmax function is then employed to
generate scale-specific weights W, enabling the model to adaptively select relevant
spatial heterogeneity features across different scales. Finally, the weights W are multi-
plied by Fy.«, applying distinct weights to the feature at each scale, and the resulting
features are aggregated through a summation operation to yield the output feature
Fadapiive after adaptive selection.

3.2.3. Spatiotemporal feature extraction
To model spatiotemporal dependencies between different frames in the spatiotempo-
ral process, we employ a transformer block with a 3D convolution operation, referred
to as the spatiotemporal transformer block (STTB), as illustrated in Figure 3 (right). In
STTB, 3D convolution is employed to extract short-term dependencies, while the trans-
former mechanism is designed to model long-term dependencies. Compared to stack-
ing multiple ConvLSTM blocks to model long-term dependencies, the transformer
component in STTB leverages a multi-head attention mechanism that more effectively
captures long-range dependencies and alleviates the gradient vanishing problem.
Specifically, STTB is composed of two key sublayers: a multi-head attention layer
(MHA) and a feed-forward network (FFN) layer (Vaswani et al. 2017). A residual connec-
tion is incorporated between these two sublayers with a layer normalization (LN)
applied before each sublayer, as described in Yang et al. (2022). First, Fadqptive iS proc-
essed through layer normalization, yielding l:'adapr,-ve = LN (Fadaptive)- Then it is fed into
the spatiotemporal multi-head attention layer, where 3D convolution operations are
used to obtain Q, K and V, formulated as follows:

Q = Conv3Dgq <'Eadaptive) 7)
K = Conv3Dg (i'-adaptive> (8)
V = Conv3Dy (’A:adaprive> ©)

where Conv3D represents 3D convolution operation. Compared to the linear transform-
ation in the standard Transformer block, applying 3D convolution allows for capturing
short-term dependency in the spatiotemporal process. Meanwhile, the long-term depend-
encies are captured based on the principles of the attention mechanism, formulated as
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follows (Vaswani et al. 2017):

QK™
Funa = Softmax (ﬁ) Y (10)
where Fyua represents the feature map after the MHA layer, and Softmax represents
the softmax function.

Further, the residual connection is applied to obtain:

Fattention = FmHa + Fadaprive (11)
After that, the final output of the STTB is obtain as follows:
Fout = FFN( LN (Fattention)) + Fattention (12)

Finally, following the configuration of Vaswani et al. (2017), we stack six STTB mod-
ules to effectively capture and model spatiotemporal dependencies, thereby enhanc-
ing the model’s representational capacity.

4, Experiments and evaluation
4.1. Data description and experimental setup

The proposed model was evaluated on three spatiotemporal process datasets (see
Table 1), including the Shenzhen radar echo rainfall dataset, the WeatherBench data-
set, and the Dongting Lake flood inundation dataset.

The Shenzhen radar echo rainfall dataset originates from Luo et al. (2021) and is
used for short-term rainfall forecasting. From this dataset, the samples used for train-
ing, validation, and testing are 8,000, 2,000, and 4,000, respectively. Each sample con-
sists of 15 radar echo images, recorded at 6-minute intervals, covering an area of
101 km x 101 km. In the training phase, the model takes the first five-time steps as
input to predict the radar echo rainfall patterns for the subsequent ten-time steps.

The WeatherBench dataset, provided by Rasp et al. (2020), serves as a widely recog-
nized benchmark for climate prediction. It includes gridded climate variables from
1979 to 2018, encompassing a variety of meteorological factors such as temperature,
humidity, and others. Due to the dataset’s large scale and the abundance of variables,
we select temperature as the target variable for our experiments. The data has a spa-
tial resolution of 5.625° (resulting in a 64 x 32 global grid) and a temporal resolution
of 1hour, providing global coverage. Following the data split strategy of Rasp et al.
(2020), we use the years 1979-2015 for training, 2016 for validation, and 2017-2018
for testing. This results in 13,514 training samples, 366 validation samples, and 730
testing samples. Each sample consists of 24 sequential global temperature frames,

Table 1. Overview of the spatiotemporal process datasets used in the experiments.

Train Validation/test Input Output
Dataset Input size sequence sequence length length
Shenzhen radar echo rainfall 128 x 128 8,000 6,000 5 10
WeatherBench 64 x 32 13,514 1,096 12 12

Dongting lake flood inundation 128 x 128 10,800 2,730 12 12




INTERNATIONAL JOURNAL OF GEOGRAPHICAL INFORMATION SCIENCE . 1

corresponding to 24 hourly measurements. The prediction task is formulated as a 12-h
ahead forecast, using the past 12 hours of temperature data to predict the following
12 h. All temperature values are expressed in Kelvin (K).

The Dongting Lake flood inundation dataset, compiled by Chen et al. (2024),
records the flood process from 2012 to 2022, featuring an hourly temporal resolution
and a spatial resolution of 10 meters. We selected data from the years 2012, 2014,
2016, 2017, and 2019 for model training. Given that each image contains
4,350 x 5,610 grid cells, making direct input to the model computationally expensive
and prone to memory overflow. To mitigate this, we cropped the images into
128 x 128 patches with a 0.2 overlap ratio, yielding 10,800 training samples and 2,730
testing samples. Each sample comprises 24 flood inundation images, where the initial
12 frames serve as input and the remaining 12 frames are predicted as output, pre-
dicting the spatiotemporal evolution of flood inundation.

To ensure a fair evaluation, all experiments were conducted on the same machine
to eliminate potential biases caused by varying hardware setups. We selected seven
models, ConvLSTM (Shi et al. 2015), PredRNN (Wang et al. 2017), PredRNN++ (Wang
et al. 2018), SimVP (Gao et al. 2022), IDA-LSTM (Luo et al. 2021), SwinLSTM (Tang et al.
2023), PredFormer (Tang et al. 2024), IAM4VP (Seo et al. 2023), STMixGAN (He et al.
2025), and Uniformer (Li et al. 2023), for comparison with the proposed model. We
selected Adam as the optimizer, with a learning rate set to 0.0005 and a maximum of
8,000 iterations. All implementations were developed using PyTorch and Python.

4.2. Evaluation metrics

To validate the performance and effectiveness of the proposed model, we used Mean
Squared Error (MSE), Mean Absolute Error (MAE), and Structural Similarity Index
Measure (SSIM) as evaluation metrics to measure the differences between the predic-
tion and ground truth (Liu et al. 2022). Given the observed image y; and predicted
image ¥;, their calculation formulas are as follows (Shi et al. 2015):

MSE:%Xn: (y-—j/i)z (15)

i=1

LI
MAE:EZ’y,-—y, (16)
i=1

(215 1y +C1) (205 + C)
(u§ + 12 +C1) (63 + 02 +c2)

SSIM(3, y) = (17)

where n is the total number of observations, 1, and y, represent the mean values of
the predicted and ground truth images, a)?/ and aﬁ are their respective variances, oy IS
the covariance between them, C1 and C2 are small constants added to prevent div-
ision by zero.

In addition, we also selected the meteorological evaluation metrics, Critical Success
Index (CSI) (Liu et al. 2022) and Heidke Skill Score (HSS) (Luo et al. 2021), to assess the
accuracy of radar echo rainfall process prediction. Specifically, we set three thresholds
of 5, 20, and 40 to represent different rainfall intensities (light rain, moderate rain, and
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heavy rain). The predicted pixel values and ground-truth pixel values are converted to
0/1 using these thresholds. The formulas for CSI and CSI can be as follows (Hogan
et al. 2010):

TP
=T NP 1
TP x TN — FN x FP
HSS = a . (19)

(TP + FN)(FN + TN) + (TP + FP)(FP + TN)

where TP (True Positive) refers to correctly predicting an event that occurred, and TN
(True Negative) refers to correctly predicting the absence of an event. FP (False
Positive) means incorrectly predicting an event that did not occur, and FN (False
Negative) means failing to predict an event that occurred. CSI and HSS scores lie
between 0 and 1, with greater values reflecting superior prediction performance.

4.3. Performance comparison

4.3.1. Comparison with state-of-the-art (SOTA) methods

Table 2 presents the performance comparsion between the proposed model and the
SOTA models on Shenzhen radar echo data. Bold values indicate the best perform-
ance. Spatiotemporal Multiscale Transformer (SMT) model refers to the model without
the adaptive scale selection module, while SAMT represents the model incorporating
this module. Specifically, our model outperforms others in HSS and CSI across different
thresholds. At HSS thresholds of 5, 20, and 40 dBZ, the proposed model surpasses the
best benchmark model (IDA-LSTM) by 0.8, 1.5, and 8.4%, respectively. Similarly, for CSI
at the same thresholds, SAMT demonstrates improvement of 1, 2.3, and 5.9% over
IDA-LSTM, respectively. In addition, compared to other models, the SAMT model
achieves the second-best result in MAE, with only a minor difference from the optimal
result, while achieving the best performance in MSE. Notably, SwinLSTM, PredFormer,
Uniformer, IAM4VP and STMixGAN performed similarly poorly across all metrics. This
may be due to the fact that both models struggle to capture the spatiotemporal evo-
lution patterns of radar-based rainfall processes, especially under conditions of limited
historical input and long prediction horizons. Furthermore, the results indicate that

Table 2. Quantitative comparison results between our model and SOTA models on the Shenzhen
radar echo rainfall dataset.

HSS 1 cslT

dBZ threshold 5 20 40 5 20 40 MAE | MSE |
ConvLSTM 0.696 0.491 0.127 0.771 0.421 0.070 15.00 24.34
PredRNN 0.710 0.494 0.096 0.773 0.408 0.059 14.15 23.67
PredRNN-+-+ 0.708 0.515 0.148 0.772 0.437 0.091 14.35 23.8

SimVP 0.675 0.474 0.129 0.755 0.401 0.082 15.60 24.76
IDA-LSTM 0.715 0.518 0.171 0.778 0.440 0.106 14.13 23.66
SwinLSTM 0.542 0.348 0.003 0.656 0.297 0.002 21.30 30.75
PredFormer 0.530 0.346 0.007 0.644 0.290 0.004 21.54 31.33
IAM4VP 0.529 0.348 0.012 0.644 0.297 0.007 21.79 32.13
STMixGAN 0.535 0.356 0.014 0.650 0.303 0.008 21.46 30.93
Uniformer 0.538 0.351 0.014 0.648 0.300 0.008 21.76 30.41
SMT (ours) 0.723 0.515 0.237 0.784 0.450 0.150 14.47 23.00

SAMT (ours) 0.723 0.533 0.255 0.788 0.463 0.161 14.31 22.56
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most models effectively identify low-value regions (5 dBZ). However, for medium-to-
high-value regions (20 and 40 dBZ) SAMT outperforms the the weakest-performing
model, improving prediction accuracy by 18.7 and 25.2% in HSS and by 17.3 and
15.9% in CSI. The results domonstrate that the SAMT model provides more accurate
predictions of the spatiotemporal rainfall process across different rainfall thresholds.

Figure 5 depicts the variations in HSS and CSI prediction curves at different time
steps under various thresholds. As the number of future time frames increases, the
prediction performance of most models gradually declines, highlighting the challenges
of long-term forecasting. However, as shown in Figure 5, our model achieves the best
prediction accuracy at all threshold values, with its prediction curves consistently
remaining above those of other models. These results indicate the enhanced stability
and reliability of the proposed model.
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Figure 6. An example of visualization results on the Shenzhen radar echo rainfall dataset. The top
row displays five input images along with the corresponding ground truth outputs, while the rows
below show predictions from different models.

To further demonstrate the predictive capability of the proposed model across dif-
ferent rainfall intensities, Figures 6 and 7 present the visualization of prediction results
and the corresponding errors between the predicted and observed values for various
models on the Shenzhen radar echo rainfall dataset. As illustrated in Figures 6 and 7,
SAMT produces predictions that closely resemble the ground truth and consistently
outperforms other models across all regions, achieving lower errors under varying rain-
fall intensities. SMT ranks second, followed by IDA-LSTM, whereas SwinLSTM,
PredFormer, STMixGAN, IAM4VP, and Uniformer perform less effectively. These results
underscore the strong ability of SAMT to model spatial heterogeneity and capture het-
erogeneous patterns in rainfall processes. In addition, SAMT maintains consistently
sparse prediction errors across time steps, indicating its capacity to effectively capture
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Figure 7. An example of error comparison visualization on the Shenzhen radar echo rainfall data-
set. The top row displays five input images along with their corresponding ground truth outputs.
The second row shows the predictions generated by SAMT, while the remaining rows present the
normalized errors between the predictions of different models and the ground truth.

both short- and long-term dependencies. This advantage stems from its architecture,
which leverages the short-range modelling capabilities of convolution operations and
the long-range modelling strength of the transformer.

Similarly, the SAMT model was evaluated on the WeatherBench dataset. As pre-
sented in Table 3, our model achieves the highest scores across all metrics.
Specifically, the proposed SAMT model improves upon the best benchmark by 22.27%
in MAE, 41.93% in MSE, and 0.76% in SSIM. Notably, all state-of-the-art baseline mod-
els demonstrate a decline in performance compared to the proposed SAMT model,
with SimVP model showing the most significant decline, highlighting the superior gen-
eralization capability of our model. Figures 8 and 9 present the visualization of
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Table 3. Quantitative comparison results between our model and SOTA models on the
WeatherBench dataset.

Model MAE | MSE | SSIM 1
ConvLSTM 109.46 10.40 0.7654
PredRNN 148.25 18.45 0.6487
PredRNN-++ 121.44 14.13 0.7917
SimVP 1808.38 296.04 0.2707
IDA-LSTM 135.02 15.47 0.7135
SwinLSTM 52.34 234 0.9025
PredFormer 47.12 1.78 0.9260
IAM4VP 43.00 1.55 0.9262
STMixGAN 54.38 6.91 0.9364
Uniformer 46.74 1.84 0.8908
SMT (ours) 31.86 0.93 0.9421
SAMT (ours) 31.27 0.90 0.9440
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Figure 8. An example of visualization results on the WeatherBench dataset. The first and second
rows display the ground truth temperature maps, with the first 12 hours serving as input and the
subsequent 12 hours as output. The remaining rows show the 12-hour predictions from various

models.

prediction global temperature predictions results and the corresponding errors
between the predicted and observed values for various models. The error is calculated
as the absolute difference between the predicted and ground truth frames, i.e.,
|predicted — ground truth].

As observed, the predictions generated by SAMT exhibit a high degree of consist-
ency with the actual observations. Compared with the true temperature distribution,
SAMT produces smaller error maps and effectively captures the global temperature
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Figure 9. An example of error comparison visualization on the WeatherBench dataset. The first
and second rows show the ground truth temperature maps, with the first 12 hours used as inputs
and the following 12 hours as outputs. The third row presents the predictions from our proposed
model, while the remaining rows display the error maps between the predicted and true values for
different models over the next 12 hours.

distribution patterns across low-, medium-, and high-heterogeneity regions. SwinLSTM
and PredFormer generally align with the observed temperature distribution but tend
to overestimate high-value regions (red), leading to larger errors. The predictions from
Uniformer, IAM4VP, and STMixGAN models are mostly consistent with the ground
truth, but their error distributions are larger than that of SAMT, with STMixGAN exhib-
iting relatively larger errors in certain cases (e.g., the third-to-last predicted frame). In
contrast, models such as ConvLSTM, PredRNN++, and IDA-LSTM fail to accurately cap-
ture temperature dynamics, especially in medium-to-high heterogeneity regions,
resulting in deviations from the ground. Moreover, PredRNN and SimVP exhibit large
prediction errors from the beginning, with accuracy deteriorating over time, particu-
larly for SimVP, whose degradation is more pronounced. The results in Table 3, Figures
8 and 9 further demonstrate that the SAMT model, which incorporates multiscale spa-
tial heterogeneity, has a distinct advantage in capturing complex spatial patterns,
especially in heterogeneous regions, enabling accurate prediction of dynamic changes
in global temperature.

Beyond evaluating the effectiveness of the proposed model on radar echo datasets,
we further performed comparative experiments using the flood inundation dataset to
demonstrate its applicability across diverse spatiotemporal processes. Table 4 summa-
rizes the quantitative performance results on the flood inundation dataset. Figure 10
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Table 4. Quantitative comparison results between our model and SOTA models on the flood
inundation dataset.

Model MAE | MSE | SSIM 1
ConvLSTM 77.49 36.75 0.9821
PredRNN 61.21 34.68 0.9861
PredRNN-+-+ 74.8 185.07 0.9630
SimVP 58.75 70.00 0.9822
IDA-LSTM 85.64 35.97 0.9859
SwinLSTM 69.92 34.86 0.9831
PredFormer 108.92 35.28 0.9717
IAM4VP 99.07 36.84 0.9822
STMixGAN 102.84 45.45 0.9792
Uniformer 157.94 37.86 0.9621
SMT (ours) 53.26 33.89 0.9878
SAMT (ours) 49.21 33.86 0.9880

provides visualization examples of the predictions, where white represents “water” and
black represents “no water.” The first shows the ground truth inundation areas, with
the first 12 frames as input and the subsequent 12 frames as the expected output.
The remaining rows display the predicted inundation areas for different models. For
clarity, one frame is visualized every three frames. Our model achieves superior per-
formance across three commonly used evaluation metrics (see Table 4), namely MAE,
MSE, and SSIM, outperforming the strongest baseline by 16.23, 2.36, and 0.19%,
respectively. Among the compared models, PredRNN++ performers the worst in terms
of MSE, while Uniformer exhibits the poorest performance in MAE. As for SSIM, the dif-
ferences among models are relatively small, with only a 2.59% gap between the best
and worst-performing models.

Figure 10 illustrates that all models can effectively capture the overall shape of the
inundation areas. However, from the visualization results, ConvLSTM, PredRNN,
PredRNN++, and IDA-LSTM produce blurry predictions, with IDA-LSTM being the most
affected, followed by PredRNN-++. In contrast, SwinLSTM, PredFormer, IAM4VP,
STMixGAN, Uniformer, SimVP, SMT and SAMT generate clearer and more reliable pre-
dictions, indicating that these models have stronger generalization ability and can bet-
ter adapt to different spatiotemporal process scenarios. Furthermore, compared to
SimVP, the proposed model aligns more closely with the actual inundation extent
dynamics, especially in complex regions such as boundaries. The results highlight the
superior capability of our model to learn and capture the intricate dynamics inherent
in the flood inundation process.

4.3.2. Comparison with variants of proposed method

To further verify the effectiveness of our model, we performed comparative experi-
ments to assess the contribution of its key components. Table 5 summarizes the abla-
tion study results, where “w/0” indicates the exclusion of a specific module. Notably,
CBAM + MSHM is equivalent to ESMHB as described in Section 3.2.1, but for consist-
ency in comparison, we refer to it uniformly as CBAM + MSHM. As shown in Table 5,
removing either the CBAM or ASSM component leads to a decline in all metrics. The
results suggest that CBAM enables the SAMT model to prioritize crucial information
while filtering out irrelevant details. Meanwhile, ASSM allows for adaptive selection of
multiscale information, assigning varying weights to different scales, which
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Figure 10. Visualization of prediction examples on the Dongting Lake flood inundation dataset.

significantly enhances the model’s performance. When the model lacks the MSHM
component, its performance is significantly worse than all results obtained with MSHM
included, emphasizing the critical role of multiscale features and spatial heterogeneity
in spatiotemporal prediction.

In addition, we investigated the impact of CBAM placement on prediction perform-
ance. The results indicate that applying feature enhancement first outperforms
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Table 5. Quantitative results of the ablation study for our model on the Shenzhen radar echo
rainfall dataset.

HSS 1 (&I
dBZ Threshold 5 20 40 5 20 40 MAE | MSE |
w/o CBAM 0.717 0.462 0.232 0.779 0.419 0.147 17.52 26.79
w/o MSHM
w/o ASSM
w/o CBAM 0.721 0.517 0.251 0.785 0.454 0.158 14.56 22.97
MSHM + ASSM
w/o ASSM 0.723 0.515 0.237 0.784 0.450 0.150 14.47 23.00
CBAM + MSHM
w/o MSHM 0.722 0.512 0.247 0.783 0.452 0.153 14.92 23.66
w/o ASSM
CBAM
MSHM + ASSM + CBAM 0.715 0.518 0.220 0.788 0.448 0.138 14.36 22.59
CBAM + MSHM + ASSM 0.723 0.533 0.255 0.788 0.463 0.161 14.31 22.56

Table 6. Performance comparison of single-scale and multi-scale spatial heterogeneity.

Scale HSS 1 csl 1
Model 1 3 5 7 5 20 40 5 20 40
scale_1 v 0702 0471 0247 0787 0432 0155
scale_3 v 0708 0489 0224 0772 0417  0.138
scale_5 v 0711 0497 0205 0776 0440 0130
scale_7 v/ 0713 0502 0240 0789 0446  0.150

scale_1_3_5_7 v v v v 0.723 0.533 0.255 0.788 0.463 0.161

applying it afterwards. Moreover, removing the designed components results in the
worst performance, with significant declines across all metrics. Ultimately, the model
incorporating all components achieves the best results, confirming the effectiveness of
the proposed design through ablation experiments.

4.3.3. Multiscale spatial heterogeneity analysis

The ablation study results in Section 4.3.2 demonstrate that ignoring the inherent spa-
tial heterogeneity in spatiotemporal processes significantly degrades the SAMT mod-
el's prediction accuracy. To further emphasize the importance of incorporating
multiscale features, we conducted a comparative analysis on the Shenzhen radar echo
rainfall dataset by adjusting the convolution kernel size in the MSHM, evaluating the
model’s performance under both single-scale and multiscale settings. Specifically, we
tested four individual scales corresponding to convolution kernel sizes of 1, 3, 5, and
7, as well as a multiscale scenario that integrates all four. Notably, different kernel
sizes represent different receptive fields, with each kernel size capturing spatial
dependencies at a distinct scale. The quantitative results are presented in Table 6,
while Figure 11 provides a visual comparison of predictions under single-scale and
multiscale settings.

As presented in Table 6, the multiscale model consistently outperforms all single-
scale counterparts across nearly all threshold settings for both HSS and CSI metrics,
with particularly pronounced improvements in the medium-to-high value ranges. The
results clearly demonstrate that multiscale feature representations are crucial for cap-
turing spatial heterogeneity, significantly enhancing the model’s ability to forecast
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Figure 11. Visualization of prediction examples under single-scale and multiscale settings on the
Shenzhen radar echo rainfall dataset.

dynamic patterns in heterogeneous regions accurately. In detail, when the HSS and
CSI thresholds are set to 40, the scale_5 configuration yields the weakest performance,
followed by scale_3, scale_7, and scale_1, respectively. Under thresholds of 5 and 20,
scale_1 exhibits the poorest performance, while scale_7 performs best. These results
indicate that different convolutional scales capture complementary aspects of spatial
heterogeneity that are beneficial for spatiotemporal prediction. They also highlight the
limitations of single-scale modelling in representing complex dynamic processes.

Furthermore, as illustrated in Figure 11, although the prediction quality of all mod-
els degrades over time, the multiscale model consistently stays closer to the ground
truth. These findings indicate that the multiscale model better captures long-term
dependencies and more accurately represents the direction and morphological
changes of complex spatiotemporal dynamics.

5. Conclusions and future work

In this study, we propose a novel model, SAMT, for improving the prediction of spatio-
temporal processes. The model effectively captures the multiscale characteristics and
spatial heterogeneity of spatiotemporal dynamics, which are commonly ignored by
existing approaches. To enhance feature representation, we introduce an Adaptive
Scale Selection Module (ASSM) to assign dynamic weights to features at different
scales based on their individual contributions and thus reducing information redun-
dancy and improving utilization efficiency. Then, a Spatiotemporal Transformer Block
(STTB) is incorporated to simultaneously model short-term fluctuations and long-term
dependencies. The results of three representative spatiotemporal datasets show that
SAMT consistently surpasses state-of-the-art models across different evaluation metrics,
with HSS increasing by 0.8-25.2%, CSI by 1-15.9%, MAE by 16.23-98.26%, MSE by
2.36-99.69%, and SSIM by 0.19-67.25%. The proposed model contributes to the
advancement of geographic information science through more accurate and effective
dynamic spatiotemporal prediction. The SAMT can be implemented in the dynamic
spatial analysis and spatiotemporal process evolution in broader fields, such as
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ecology, hydrology, and meteorology. Even promising progress has been made, the
study is constrained to regions with abundant data, which requires future research to
enhance spatiotemporal prediction in data-scarce or data-absent areas through meth-
ods such as transfer learning and physics-informed modelling.
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